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1 QUANTILE MAPPING

The statistical adjustment of ensemble forecasts begins with quantile mapping. Assume we
have a raw ensemble forecast amount ¥ which provides an estimate of the true (unknown)
precipitation amount x. Assume we have cumulative distribution functions (CDFs) for the
forecast and analyzed @ ¢ (x) and ®,(x) respectively. Given a precipitation amount, the CDFs
return the non-exceedance probability g. The inverse function, @;1 (q) is the quantile func-
tion, which returns the corresponding analyzed amount associated with that quantile. Quan-
tile mapping thus adjusts the forecast to be consistent with the analyzed CDF:
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CDFs are needed to perform the quantile mapping. In this application, CDFs were generated
separately for each lead time and each model grid point using 1998-2017 m=11 member re-
forecast training data and using the nine reforecast dates of the year closest to the Julian day
of the real-time forecast. Following Hamill and Scheuerer (2018; hereafter HS18), **ns** sup-
plemental locations were used to provide extra training data. [****Esti, verify this ****] The
supplemental locations were selected based on the similarities of analyzed climatologies and
terrain characteristics, directly following HS18.

Quantile mapping will be applied during both training and real-time forecasting steps. First,
during the training phase, it will be applied to the reforecast data in a cross-validated manner
to ameliorate systematic errors such as the over-forecasting of light precipitation amounts.
With 20 years of reforecast data, 19 years of data are used to populate the CDFs, and the re-
maining year of training data is then quantile mapped. The procedure is repeated to provide
quantile-mapped precipitation amounts spanning the 20 years. These data are then used in
a second step of the training process, as input for developing closest-member histograms, dis-
cussed below.

Quantile mapping is also applied to the real-time ensemble as the first step in the correction
of systematic error. In this case, the CDFs for the quantile mapping were developed from the



full 20 years x 11 members x 9 cases x ns supplemental locations, thus providing XXXX total
samples to generate the empirical CDE

Because of the model’s tendency to over-forecast light precipitation, quantile mapping some-
times adjusts a forecast light precipitation amount to zero. Suppose the CDFs indicated an
under-forecasting of light precipitation. In this case there are multiple quantiles of @ ¢(x) that
likely are associated with zero, and we face a non-uniqueness problem: given a zero forecast
amount to quantile map, is this representing the 0th percentile of the forecast CDE or per-
haps the 5th percentile? This problem is avoided by instituting an ad-hoc rule, such that zero
forecast amounts are retained without quantile mapping.

2 GENERATING WEIGHTS FOR SORTED ENSEMBLE MEMBERS

The second corrective step during the training process is applied after the quantile mapping
of ensemble members has occurred. Suppose for the moment there is a rational basis to be-
lieve that the analyzed state is more likely to be near some sorted members than others. Let’s
assume we have a vector of weights w = [w(y), ..., W] associated with the sorted members
that reflect this likelihood, where ;) denotes the ith rank. Weighted probabilities can then be
generated in a straightforward manner. When considering the probability of exceeding the
threshold amount ¢, we define an indicator function for the ith sorted member:
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Weighted probabilities of exceeding the amount ¢ are then generated as follows:
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The question then turns to how to objectively generate weights associated with each sorted
member. A procedure for doing so was described in HS18 using the previously mentioned
closest-member histograms. To generate closest-member histograms, after a set of cases
of ensemble training data for a particular lead time is quantile mapped, we have an 11-
dimensional vector § = [71,..., 11] of reforecast quantile-mapped estimates of the unknown
precipitation amount. These data are sorted, ¥°* = [7q), ..., Jun], and then they are compared
to the analyzed precipitation amount. Closest-member histograms are generated tallying
over many samples which sorted member is closest to the analyzed amount by rank. Follow-
ing HS18, separate closest-member histograms are generated in this application for different
quantile-mapped ensemble-mean amounts.

A complication arises in the application of this methodology to ECMWEF real-time forecasts.
For ECMWE the training data consisted of 11 reforecast members, resulting in 11-dimensional



closest-member histograms. The real-time ensemble currently is comprised of 51 mem-
bers. Consequently, the closest-member histograms cannot be used directly given the dif-
fering ensemble sizes. However, a straightforward procedure can be applied to generate
closest-member histograms for the 51-member ensemble through the use of Beta distribu-
tions (Wilks 2011, section 4.4.4). A Beta distribution provides a continuous probability den-
sities associated here with a quantile g in the range of (0,1). The pdf f(q, a, ) of the Beta
distribution is
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a and S are the parameters of the Beta distribution and I'(:) is the Gamma function. Parame-
ter estimates & and f are commonly generated from the method of moments as
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where G and s? are the sample mean and standard deviation, respectively. Beta distributions
have flexible shapes and can be fit to resemble the closest-member histograms. An exam-
ple of this is provided in Figure 1, illustrating closest-member histograms and histograms
re-generated from the corresponding integration of fitted Beta distributions.

The procedure for generating closest-member histograms for the real-time, 51-member en-
semble is as follows: (a) fit a Beta distribution to the 11-dimensional closest-member his-
togram based on the ECMWEF reforecast training data; (b) generate the weights associated
with the larger m=51-member ensemble by integrating the Beta distribution into 51 equally
spaced regions spanning 0 to 1. For step (a), sample means and variances are needed to apply
the method of moments to estimate the Beta distribution parameters. Let w'! represent the
appropriate 11-dimensional closest-histogram vector of weights from the reforecast ensem-
ble based on the quantile-mapped ensemble mean. Let’s also denote a vector a that provides
the corresponding central value associated with each rank in the closest-member histogram
when mapped to the interval (0,1):
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The sample mean ¢ is
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and the sample variance is calculated from a closest-histogram weighted sum of squared dif-
ferences from the sample mean:
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The second step is generating the closest-member histogram weights through integration
of the fitted Beta distribution. Let j indicate the rank in the sorted, 51-member ensemble
and the index in the closest-member histogram vector w’!. The closest-member histogram
weight for this rank is calculated as
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Figure 2 provides an example of the 51-dimensional closest-member histograms that have
been recreated from the 11-dimensional data illustrated in Fig. 1.

With the 51-dimensional closest-member histograms generated from the training data, the
statistical adjustment of the real-time forecasts can proceed. Real-time forecasts are quantile-
mapped using reforecast-based CDFs (eq. 1). Based on the ensemble-mean precipitation
amount, the appropriate closest-member histogram is selected, and probabilities are gener-
ated using egs. (2) and (3).

3 GENERATING SYNTHETIC, EQUALLY LIKELY ENSEMBLE MEMBERS
LEVERAGING CLOSEST-MEMBER HISTOGRAM WEIGHTS

The post-processed ensemble precipitation guidance is to be used as a forcing to an ensem-
ble hydrologic prediction system to produce ensemble of streamflow predictions. With the
procedure described thus far, we have precipitation event probabilities and the data used to
generate them, an ensemble of quantile-mapped members and closest-member histogram
weightings. We do not have an ensemble of exchangeable, equally likely members; we have
weighted members instead.

This introduces a challenge for ensemble streamflow prediction, where a presumed ensem-
ble of exchangeable, equally likely members is assumed. Could one produce probabilistic
realistic streamflow forecasts by weighting the resulting ensembles of streamflow simula-
tions with the closest-member histogram weights? Unfortunately, since the closest-member
histogram weights will vary with forecast lead time and with ensemble-mean precipitation
amount, there is no one unique vector of weights that can be applied to a streamflow time
series, even at one single grid point. Further, the streamflow at a point represents not only
rainfall at that point but at grid points which drain into that point. Closest-member his-
togram weighting of ensemble streamflow output is thus inappropriate.



We now describe a procedure that generates modest adjustments to the quantile-mapped
ensemble to make the data more exchangeable in character while preserving rank structure.
The adjustment procedure leverages only the data at hand, the quantile-mapped ensemble
for a particular lead time and grid point and the associated 51-dimensional closest-member
histogram. The procedure to be applied to adjust the quantile-mapped members again lever-
ages the machinery of quantile mapping, using it to perform a stretching of the original en-
semble so that members are more equally likely in their statistical character. It is very similar
to the ensemble copula coupling (transformation) or ECC-T method described in Schefzik et
al. (2013).

For the procedure here to adjust the quantile-mapped members to have characteristics more
like equally likely members, ®@ ¢ (x) will no longer represent a CDF of past forecasts. Instead, it
now depicts a distribution for a particular grid point fitted to today’s quantile-mapped under
the assumption that all members are given equal weight. Hereafter this distribution is re-
ferred to as the "prior". Similarly, ®,(x) now depicts a distribution for a particular grid point
fitted to today’s quantile-mapped and closest-histogram weighted ensemble, which we de-
note as the "posterior".

How are the prior and posterior distributions estimated? In both cases we estimate the pa-
rameters of a distribution with a point mass at zero, known as the fraction zero, or FZ, and a
fitted Gamma distribution (Wilks 2011, section 4.4.3) for the positive amounts.

The procedure for estimating the fitted distributions for the prior (quantile-mapped) and
posterior (quantile mapped and weighted) are functionally equivalent. In the latter case,
weights in the procedure are supplied by the closest-member histograms. In the former,
weights are constant, 1/51. Again, assume the sorted, quantile-mapped ensemble is avail-
able: ¥° = [7q),-.., Jm], and assume a set of weights have been determined: w = [w(j),..., Wum],
equally weighted or closest-member histogram weighted. To determine the estimated frac-
tion zero, we generate a 51-member indicator function for whether the precipitation is ef-
fectively non-zero or not. The threshold for such a determination is 0.01 mm. The indicator
function for the ith member is

0 if 5 <0.01
I(i)z{ Lo =R (11)
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The estimated fraction zero is generated from the weighted sum of the indicator functions:

51
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Suppose of the 51 sorted, quantile-mapped members there were n remaining samples with
positive precipitation. We then generate weighted estimated of mean of positive quantile-
mapped forecast values:
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Following the procedure outlined in Wilks (ibid) and using the Thom (1958) estimator, we
estimate a parameter D,:
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From this it is now possible to estimate the shape a and scale § parameters of the Gamma
distribution:
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With the fraction zero and gamma-distribution parameters separately estimated for quantile-
mapped unweighted and weighted ensembles, we have fitted ® (0 and ®,(x) and the orig-
inal ensemble of quantile-mapped values. The mapping procedure from eq. (1) is now ap-
plied. This procedure is illustrated in Fig. 3. Panel (a) shows the empirical CDF (horizontal
black lines) and the ® ¢ (x) (red line) for a particular grid point. Panel (b) shows the weighted
empirical (horizontal black lines) and ®,(x) for the closest-member histogram weighted en-
semble. Finally, panel (c) illustrates the quantile-mapping procedure, where the original
quantile-mapped values are shifted slightly (the horizontal black arrows) consistent with the
differences in prior and posterior distributions. Figure 4 shows the effect of this for a sample
grid point. The ensemble after application of this process is more stretched out, with higher
high precipitation amounts and lower low precipitation amounts. Figure 5 shows before vs.
after scatterplots of precipitation data for two grid points separated by approximately 422 km.
As shown, the structure of relationships between data at the two grid points is preserved after
the stretching of the data.
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5 FIGURES

Closest-member histograms and histogram from fitted Beta distribution, 30-hour forecasts
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Figure 1: Illustration of 11-dimensional closest-member histograms generated for the
ECMWEF reforecast ensemble using 9 reforecast dates centered on 14 July. Forecasts
are of accumulated precipitation from 6 to 30 h, and analyzed data was extracted
from the EFAS precipitation analysis database. Fitted Beta distributions are also
shown alongside the closest-member histograms. Following HS18, histograms were

generated separately for different ensemble-mean amounts.

Quantile-mapped

ensemble-mean precipitation was classified as light if the mean is = 0.01 mm and <
2.0 mm. It is classified as moderate if the mean is = 2.0 mm and < 6.0 mm. Finally;, it
is classified as heavy if the mean is = 6.0 mm.

51-member closest-member histograms from fitted Beta distributions, 30-hour forecasts
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Figure 2: 51-dimensional closest-member histograms generated through a Beta-distribution
fitting procedure using the data from Fig. 1.



Quantile mapping of unweighted to closest-member histogram weighted forecasts at 9.0E, 53.3N
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Figure 3: Illustration of the procedure for adjustment of quantile-mapped precipitation fore-
casts. Data in this example were accumulated 6- to 30-hour forecasts of accu-
mulated precipitation for the forecast initialized at 00 UTC 14 July 2016 for the
model grid point nearest to 9°E, 53.3°N. (a) Empirical distribution (black) and fit-
ted Gamma prior distribution (red) for the quantile-mapped, unweighted ensem-
ble. (b) Empirical (black) and fitted posterior Gamma distribution (blue) for the
closest-member histogram weighted ensemble. (c) Illustration of the mapping pro-
cedure; original quantile-mapped values are shifted slightly (the horizontal black
arrows) consistent with the differences in prior and posterior distributions.



Synthetic weighted, quantile-mapped vs.
original quantile mapped ensemble
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Figure 4: Illustration of the effective stretching of the ensemble forecasts through the map-
ping procedure using the ensemble forecast data of Fig. 3. Abscissa provides the
original quantile-mapped ensemble, and values on the ordinate provide the values
after adjustment.
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Amount (mm) at 30.2E, 49.5N

Scatterplots, 30.2E, 53.3N vs

(a) Quantile-mapped ensemble
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Figure 5: Relationship between 6- to 30-h precipitation forecasts initialized at 00 UTC 14 July
2016 for two grid points (locations noted in the plot). (a) Precipitation scatterplot

before adjustment, and (b) after adjustment.
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